skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available May 23, 2026
  3. Pham, Khanh D; Chen, Genshe (Ed.)
    Free, publicly-accessible full text available May 21, 2026
  4. Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a "judgment" on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  5. ABSTRACT Adaptive introgression involves the acquisition of advantageous genetic variants through hybridisation, which are subsequently favoured by natural selection due to their association with beneficial traits. Here, we analysed speciation patterns of the kleptoparasitic spider,Argyrodes lanyuensis, through genomic analyses and tested for possible genetic evidence of adaptive introgression at the Taiwan–Philippines transition zone. Our study used highly polymorphic SNPs to demonstrate that speciation occurred when the Hualien (on Taiwan Island + Green Island) and Orchid Island + Philippine lineages separated during the early to mid‐Pleistocene. The best colonisation model suggested by approximate Bayesian computation and random forests and biogeographical analyses supported an inference of a bottleneck during speciation, an interpretation reinforced by observation of lowerFSTvalues and reduced genetic diversity of the Orchid Island + Philippines lineage. We also found the highest support for the occurrence of introgression on the youngest island (Green Island) of the Taiwan–Philippines transition zone based on the ABBA‐BABA test. Our study highlights the inference of two noteworthy species (Hualien + Green Island and Orchid Island + Philippines) based on our species delimitation tests, with gene flow between Green Island and Orchid Island that indicates introgression. The potential adaptive alleles in Green Island population, which are under balancing selection, provide initial evidence of possible rare case of adaptive introgression. This could represent an evolutionary response to a newly formed niche (or novel geographical context) lying between the tropical climate of the Philippines and the subtropical climate of Hualien, Taiwan. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. Abstract We present JWST-NIRCam narrowband, 4.05μm Brαimages of the Sgr C Hiiregion, located in the central molecular zone (CMZ) of the Galaxy. Unlike any Hiiregion in the solar vicinity, the Sgr C plasma is dominated by filamentary structure in both Brαand the radio continuum. Some bright filaments, which form a fractured arc with a radius of about 1.85 pc centered on the Sgr C star-forming molecular clump, likely trace ionization fronts. The brightest filaments form a “π-shaped” structure in the center of the Hiiregion. Fainter filaments radiate away from the surface of the Sgr C molecular cloud. The filaments are emitting optically thin free–free emission, as revealed by spectral index measurements from 1.28 GHz (MeerKAT) to 97 GHz (Atacama Large Millimeter/submillimeter Array). But, the negative in-band 1 to 2 GHz spectral index in the MeerKAT data alone reveals the presence of a nonthermal component across the entire Sgr C Hiiregion. We argue that the plasma flow in Sgr C is controlled by magnetic fields, which confine the plasma to ropelike filaments or sheets. This results in the measured nonthermal component of low-frequency radio emission plasma, as well as a plasmaβ(thermal pressure divided by magnetic pressure) below 1, even in the densest regions. We speculate that all mature Hiiregions in the CMZ, and galactic nuclei in general, evolve in a magnetically dominated, low plasmaβregime. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  7. Free, publicly-accessible full text available December 13, 2025
  8. Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20Mand surrounding envelope masses of ∼100M. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9Mand associated massive (∼90M) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026